MakeItFrom.com
Menu (ESC)

7003-T6 Aluminum vs. 7020-T6 Aluminum

Both 7003-T6 aluminum and 7020-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7003-T6 aluminum and the bottom bar is 7020-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 11
10
Fatigue Strength, MPa 130
130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 230
230
Tensile Strength: Ultimate (UTS), MPa 390
390
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 380
380
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 510
610
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
39
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
37
Resilience: Unit (Modulus of Resilience), kJ/m3 710
690
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
47
Strength to Weight: Axial, points 37
37
Strength to Weight: Bending, points 40
41
Thermal Diffusivity, mm2/s 59
59
Thermal Shock Resistance, points 17
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.6 to 94.5
91.2 to 94.8
Chromium (Cr), % 0 to 0.2
0.1 to 0.35
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 0 to 0.35
0 to 0.4
Magnesium (Mg), % 0.5 to 1.0
1.0 to 1.4
Manganese (Mn), % 0 to 0.3
0.050 to 0.5
Silicon (Si), % 0 to 0.3
0 to 0.35
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 5.0 to 6.5
4.0 to 5.0
Zirconium (Zr), % 0.050 to 0.25
0.080 to 0.25
Residuals, % 0 to 0.15
0 to 0.15