MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. EN 1.4874 Stainless Steel

7005 aluminum belongs to the aluminum alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 10 to 20
6.7
Fatigue Strength, MPa 100 to 190
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 200 to 400
480
Tensile Strength: Yield (Proof), MPa 95 to 350
360

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 140 to 170
13
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
29
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 19 to 38
16
Strength to Weight: Bending, points 26 to 41
16
Thermal Diffusivity, mm2/s 54 to 65
3.3
Thermal Shock Resistance, points 8.7 to 18
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 94.7
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0.060 to 0.2
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
23 to 38.9
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.010 to 0.060
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0