MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. EN AC-48000 Aluminum

Both 7005 aluminum and EN AC-48000 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 10 to 20
1.0
Fatigue Strength, MPa 100 to 190
85 to 86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 200 to 400
220 to 310
Tensile Strength: Yield (Proof), MPa 95 to 350
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 380
570
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 140 to 170
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
300 to 510
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 19 to 38
23 to 33
Strength to Weight: Bending, points 26 to 41
31 to 39
Thermal Diffusivity, mm2/s 54 to 65
54
Thermal Shock Resistance, points 8.7 to 18
10 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 94.7
80.4 to 87.2
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0.8 to 1.5
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 1.0 to 1.8
0.8 to 1.5
Manganese (Mn), % 0.2 to 0.7
0 to 0.35
Nickel (Ni), % 0
0.7 to 1.3
Silicon (Si), % 0 to 0.35
10.5 to 13.5
Titanium (Ti), % 0.010 to 0.060
0 to 0.25
Zinc (Zn), % 4.0 to 5.0
0 to 0.35
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants