MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. S13800 Stainless Steel

7005 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10 to 20
11 to 18
Fatigue Strength, MPa 100 to 190
410 to 870
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 230
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 200 to 400
980 to 1730
Tensile Strength: Yield (Proof), MPa 95 to 350
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
810
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 140 to 170
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
1090 to 5490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 19 to 38
35 to 61
Strength to Weight: Bending, points 26 to 41
28 to 41
Thermal Diffusivity, mm2/s 54 to 65
4.3
Thermal Shock Resistance, points 8.7 to 18
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 94.7
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.060 to 0.2
12.3 to 13.2
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
73.6 to 77.3
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0.010 to 0.060
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0