MakeItFrom.com
Menu (ESC)

7005-T6 Aluminum vs. EN AC-42200-T6

Both 7005-T6 aluminum and EN AC-42200-T6 are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7005-T6 aluminum and the bottom bar is EN AC-42200-T6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 12
3.0
Fatigue Strength, MPa 130
86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 380
320
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 380
500
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 610
600
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
9.0
Resilience: Unit (Modulus of Resilience), kJ/m3 700
490
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 36
34
Strength to Weight: Bending, points 40
40
Thermal Diffusivity, mm2/s 54
66
Thermal Shock Resistance, points 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 94.7
91 to 93.1
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.19
Magnesium (Mg), % 1.0 to 1.8
0.45 to 0.7
Manganese (Mn), % 0.2 to 0.7
0 to 0.1
Silicon (Si), % 0 to 0.35
6.5 to 7.5
Titanium (Ti), % 0.010 to 0.060
0 to 0.25
Zinc (Zn), % 4.0 to 5.0
0 to 0.070
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.1