MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. 332.0 Aluminum

Both 7010 aluminum and 332.0 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 3.9 to 6.8
1.0
Fatigue Strength, MPa 160 to 190
90
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 300 to 340
190
Tensile Strength: Ultimate (UTS), MPa 520 to 590
250
Tensile Strength: Yield (Proof), MPa 410 to 540
190

Thermal Properties

Latent Heat of Fusion, J/g 380
530
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 630
580
Melting Onset (Solidus), °C 480
530
Specific Heat Capacity, J/kg-K 860
880
Thermal Conductivity, W/m-K 150
100
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
26
Electrical Conductivity: Equal Weight (Specific), % IACS 120
84

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1120
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
50
Strength to Weight: Axial, points 47 to 54
24
Strength to Weight: Bending, points 47 to 52
31
Thermal Diffusivity, mm2/s 58
42
Thermal Shock Resistance, points 22 to 26
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.9 to 90.6
80.1 to 89
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 1.5 to 2.0
2.0 to 4.0
Iron (Fe), % 0 to 0.15
0 to 1.2
Magnesium (Mg), % 2.1 to 2.6
0.5 to 1.5
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0 to 0.050
0 to 0.5
Silicon (Si), % 0 to 0.12
8.5 to 10.5
Titanium (Ti), % 0 to 0.060
0 to 0.25
Zinc (Zn), % 5.7 to 6.7
0 to 1.0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.5