MakeItFrom.com
Menu (ESC)

7010-T651 Aluminum vs. 7475-T651 Aluminum

Both 7010-T651 aluminum and 7475-T651 aluminum are aluminum alloys. Both are furnished in the T651 temper. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7010-T651 aluminum and the bottom bar is 7475-T651 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 3.9
12
Fatigue Strength, MPa 180
210
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 340
350
Tensile Strength: Ultimate (UTS), MPa 580
590
Tensile Strength: Yield (Proof), MPa 540
520

Thermal Properties

Latent Heat of Fusion, J/g 380
380
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 480
480
Specific Heat Capacity, J/kg-K 860
870
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
34
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
68
Resilience: Unit (Modulus of Resilience), kJ/m3 2130
1920
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
46
Strength to Weight: Axial, points 53
55
Strength to Weight: Bending, points 51
52
Thermal Diffusivity, mm2/s 58
53
Thermal Shock Resistance, points 25
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.9 to 90.6
88.6 to 91.6
Chromium (Cr), % 0 to 0.050
0.18 to 0.25
Copper (Cu), % 1.5 to 2.0
1.2 to 1.9
Iron (Fe), % 0 to 0.15
0 to 0.12
Magnesium (Mg), % 2.1 to 2.6
1.9 to 2.6
Manganese (Mn), % 0 to 0.1
0 to 0.060
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.12
0 to 0.1
Titanium (Ti), % 0 to 0.060
0 to 0.060
Zinc (Zn), % 5.7 to 6.7
5.1 to 6.2
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.15