MakeItFrom.com
Menu (ESC)

7010-T652 Aluminum vs. 7075-T652 Aluminum

Both 7010-T652 aluminum and 7075-T652 aluminum are aluminum alloys. Both are furnished in the T652 temper. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7010-T652 aluminum and the bottom bar is 7075-T652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 4.0
1.8
Fatigue Strength, MPa 170
110
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 340
270
Tensile Strength: Ultimate (UTS), MPa 590
470
Tensile Strength: Yield (Proof), MPa 530
370

Thermal Properties

Latent Heat of Fusion, J/g 380
380
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 480
480
Specific Heat Capacity, J/kg-K 860
870
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
98

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
7.8
Resilience: Unit (Modulus of Resilience), kJ/m3 2050
960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
46
Strength to Weight: Axial, points 54
43
Strength to Weight: Bending, points 52
44
Thermal Diffusivity, mm2/s 58
50
Thermal Shock Resistance, points 26
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.9 to 90.6
86.9 to 91.4
Chromium (Cr), % 0 to 0.050
0.18 to 0.28
Copper (Cu), % 1.5 to 2.0
1.2 to 2.0
Iron (Fe), % 0 to 0.15
0 to 0.5
Magnesium (Mg), % 2.1 to 2.6
2.1 to 2.9
Manganese (Mn), % 0 to 0.1
0 to 0.3
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.12
0 to 0.4
Titanium (Ti), % 0 to 0.060
0 to 0.2
Zinc (Zn), % 5.7 to 6.7
5.1 to 6.1
Zirconium (Zr), % 0.1 to 0.16
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15