MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN AC-21100 Aluminum

Both 7020 aluminum and EN AC-21100 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 8.4 to 14
6.2 to 7.3
Fatigue Strength, MPa 110 to 130
79 to 87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 190 to 390
340 to 350
Tensile Strength: Yield (Proof), MPa 120 to 310
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 650
670
Melting Onset (Solidus), °C 610
550
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
34
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.9
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
300 to 400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
46
Strength to Weight: Axial, points 18 to 37
31 to 33
Strength to Weight: Bending, points 25 to 41
36 to 37
Thermal Diffusivity, mm2/s 59
48
Thermal Shock Resistance, points 8.3 to 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.2 to 94.8
93.4 to 95.7
Chromium (Cr), % 0.1 to 0.35
0
Copper (Cu), % 0 to 0.2
4.2 to 5.2
Iron (Fe), % 0 to 0.4
0 to 0.19
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 0.55
Silicon (Si), % 0 to 0.35
0 to 0.18
Titanium (Ti), % 0 to 0.25
0.15 to 0.3
Zinc (Zn), % 4.0 to 5.0
0 to 0.070
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.1

Comparable Variants