MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. 3003 Aluminum

Both 7021 aluminum and 3003 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is 3003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 9.4
1.1 to 28
Fatigue Strength, MPa 150
39 to 90
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 270
68 to 130
Tensile Strength: Ultimate (UTS), MPa 460
110 to 240
Tensile Strength: Yield (Proof), MPa 390
40 to 210

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 510
640
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
180
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
44
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
0.95 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
11 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 44
11 to 24
Strength to Weight: Bending, points 45
18 to 30
Thermal Diffusivity, mm2/s 59
71
Thermal Shock Resistance, points 20
4.7 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
96.8 to 99
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.25
0.050 to 0.2
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.5
Silicon (Si), % 0 to 0.25
0 to 0.6
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0 to 0.1
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15