MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. 4007 Aluminum

Both 7021 aluminum and 4007 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 9.4
5.1 to 23
Fatigue Strength, MPa 150
46 to 88
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 270
80 to 90
Tensile Strength: Ultimate (UTS), MPa 460
130 to 160
Tensile Strength: Yield (Proof), MPa 390
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 150
170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
42
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
18 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
49
Strength to Weight: Axial, points 44
12 to 15
Strength to Weight: Bending, points 45
20 to 23
Thermal Diffusivity, mm2/s 59
67
Thermal Shock Resistance, points 20
5.5 to 6.7

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
94.1 to 97.6
Chromium (Cr), % 0 to 0.050
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 0.4
0.4 to 1.0
Magnesium (Mg), % 1.2 to 1.8
0 to 0.2
Manganese (Mn), % 0 to 0.1
0.8 to 1.5
Nickel (Ni), % 0
0.15 to 0.7
Silicon (Si), % 0 to 0.25
1.0 to 1.7
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 5.0 to 6.0
0 to 0.1
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15