MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. 5154A Aluminum

Both 7021 aluminum and 5154A aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 9.4
1.1 to 19
Fatigue Strength, MPa 150
83 to 160
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 270
140 to 210
Tensile Strength: Ultimate (UTS), MPa 460
230 to 370
Tensile Strength: Yield (Proof), MPa 390
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 510
600
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
32
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
68 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 44
24 to 38
Strength to Weight: Bending, points 45
31 to 43
Thermal Diffusivity, mm2/s 59
53
Thermal Shock Resistance, points 20
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
93.7 to 96.9
Chromium (Cr), % 0 to 0.050
0 to 0.25
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 1.2 to 1.8
3.1 to 3.9
Manganese (Mn), % 0 to 0.1
0 to 0.5
Silicon (Si), % 0 to 0.25
0 to 0.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 5.0 to 6.0
0 to 0.2
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15