MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. 6061 Aluminum

Both 7021 aluminum and 6061 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 9.4
3.4 to 20
Fatigue Strength, MPa 150
58 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 270
84 to 210
Tensile Strength: Ultimate (UTS), MPa 460
130 to 410
Tensile Strength: Yield (Proof), MPa 390
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 510
580
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
170
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
43
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
42 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 44
13 to 42
Strength to Weight: Bending, points 45
21 to 45
Thermal Diffusivity, mm2/s 59
68
Thermal Shock Resistance, points 20
5.7 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
95.9 to 98.6
Chromium (Cr), % 0 to 0.050
0.040 to 0.35
Copper (Cu), % 0 to 0.25
0.15 to 0.4
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 1.2 to 1.8
0.8 to 1.2
Manganese (Mn), % 0 to 0.1
0 to 0.15
Silicon (Si), % 0 to 0.25
0.4 to 0.8
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 5.0 to 6.0
0 to 0.25
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15