MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. AISI 201L Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
22 to 46
Fatigue Strength, MPa 150
270 to 530
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 270
520 to 660
Tensile Strength: Ultimate (UTS), MPa 460
740 to 1040
Tensile Strength: Yield (Proof), MPa 390
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
880
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1140
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
220 to 1570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
27 to 37
Strength to Weight: Bending, points 45
24 to 30
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 20
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.4
67.9 to 75
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0