MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. C355.0 Aluminum

Both 7021 aluminum and C355.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 9.4
2.7 to 3.8
Fatigue Strength, MPa 150
76 to 84
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 460
290 to 310
Tensile Strength: Yield (Proof), MPa 390
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 630
620
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
39
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
290 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 44
30 to 32
Strength to Weight: Bending, points 45
36 to 37
Thermal Diffusivity, mm2/s 59
60
Thermal Shock Resistance, points 20
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
91.7 to 94.1
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.25
1.0 to 1.5
Iron (Fe), % 0 to 0.4
0 to 0.2
Magnesium (Mg), % 1.2 to 1.8
0.4 to 0.6
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0 to 0.25
4.5 to 5.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 5.0 to 6.0
0 to 0.1
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15