MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. EN 1.4971 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.4
34
Fatigue Strength, MPa 150
270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 270
530
Tensile Strength: Ultimate (UTS), MPa 460
800
Tensile Strength: Yield (Proof), MPa 390
340

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 44
26
Strength to Weight: Bending, points 45
23
Thermal Diffusivity, mm2/s 59
3.4
Thermal Shock Resistance, points 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0 to 0.050
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.4
24.3 to 37.1
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0