MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. EN 2.4632 Nickel

7021 aluminum belongs to the aluminum alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
17
Fatigue Strength, MPa 150
430
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 270
770
Tensile Strength: Ultimate (UTS), MPa 460
1250
Tensile Strength: Yield (Proof), MPa 390
780

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 630
1340
Melting Onset (Solidus), °C 510
1290
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
1570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 44
42
Strength to Weight: Bending, points 45
31
Thermal Diffusivity, mm2/s 59
3.3
Thermal Shock Resistance, points 20
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0 to 0.050
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 1.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
49 to 64
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
2.0 to 3.0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0 to 0.15
Residuals, % 0 to 0.15
0