MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. N08031 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.4
45
Fatigue Strength, MPa 150
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 270
510
Tensile Strength: Ultimate (UTS), MPa 460
730
Tensile Strength: Yield (Proof), MPa 390
310

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1140
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 44
25
Strength to Weight: Bending, points 45
22
Thermal Diffusivity, mm2/s 59
3.1
Thermal Shock Resistance, points 20
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.050
26 to 28
Copper (Cu), % 0 to 0.25
1.0 to 1.4
Iron (Fe), % 0 to 0.4
29 to 36.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0