MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. S45503 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.4
4.6 to 6.8
Fatigue Strength, MPa 150
710 to 800
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 270
940 to 1070
Tensile Strength: Ultimate (UTS), MPa 460
1610 to 1850
Tensile Strength: Yield (Proof), MPa 390
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1140
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
82 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 44
57 to 65
Strength to Weight: Bending, points 45
39 to 43
Thermal Shock Resistance, points 20
56 to 64

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.050
11 to 12.5
Copper (Cu), % 0 to 0.25
1.5 to 2.5
Iron (Fe), % 0 to 0.4
72.4 to 78.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.25
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
1.0 to 1.4
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0