MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. C66200 Brass

7022 aluminum belongs to the aluminum alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 6.3 to 8.0
8.0 to 15
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 290 to 320
270 to 300
Tensile Strength: Ultimate (UTS), MPa 490 to 540
450 to 520
Tensile Strength: Yield (Proof), MPa 390 to 460
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 380
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 640
1070
Melting Onset (Solidus), °C 480
1030
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
35
Electrical Conductivity: Equal Weight (Specific), % IACS 65
36

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 8.5
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
760 to 1030
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 47 to 51
14 to 17
Strength to Weight: Bending, points 47 to 50
15 to 16
Thermal Diffusivity, mm2/s 54
45
Thermal Shock Resistance, points 21 to 23
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.9 to 92.4
0
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0.5 to 1.0
86.6 to 91
Iron (Fe), % 0 to 0.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0
Nickel (Ni), % 0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Silicon (Si), % 0 to 0.5
0
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
6.5 to 12.9
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.5