MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. S38815 Stainless Steel

7022 aluminum belongs to the aluminum alloys classification, while S38815 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is S38815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.3 to 8.0
34
Fatigue Strength, MPa 140 to 170
230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 290 to 320
410
Tensile Strength: Ultimate (UTS), MPa 490 to 540
610
Tensile Strength: Yield (Proof), MPa 390 to 460
290

Thermal Properties

Latent Heat of Fusion, J/g 380
370
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 480
1310
Specific Heat Capacity, J/kg-K 870
500
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.9
7.5
Embodied Carbon, kg CO2/kg material 8.5
3.8
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1130
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 47 to 51
22
Strength to Weight: Bending, points 47 to 50
21
Thermal Shock Resistance, points 21 to 23
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.9 to 92.4
0 to 0.3
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.3
13 to 15
Copper (Cu), % 0.5 to 1.0
0.75 to 1.5
Iron (Fe), % 0 to 0.5
56.1 to 67
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
13 to 17
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
5.5 to 6.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0