MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. EN 1.0590 Steel

7049 aluminum belongs to the aluminum alloys classification, while EN 1.0590 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is EN 1.0590 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2 to 7.0
19
Fatigue Strength, MPa 160 to 170
290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 300 to 310
380
Tensile Strength: Ultimate (UTS), MPa 510 to 530
620
Tensile Strength: Yield (Proof), MPa 420 to 450
430

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.1
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.6
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 1110
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
480
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 46 to 47
22
Strength to Weight: Bending, points 46 to 47
21
Thermal Diffusivity, mm2/s 51
14
Thermal Shock Resistance, points 22 to 23
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.24
Chromium (Cr), % 0.1 to 0.22
0
Copper (Cu), % 1.2 to 1.9
0 to 0.6
Iron (Fe), % 0 to 0.35
96.4 to 100
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 1.8
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0 to 0.060
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0