MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. EN 1.3519 Steel

7049 aluminum belongs to the aluminum alloys classification, while EN 1.3519 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is EN 1.3519 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
190 to 220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 510 to 530
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 370
260
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.6
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1110
55

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
22 to 26
Strength to Weight: Bending, points 46 to 47
21 to 23
Thermal Diffusivity, mm2/s 51
12
Thermal Shock Resistance, points 22 to 23
18 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.7 to 89.5
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0.1 to 0.22
1.4 to 1.7
Copper (Cu), % 1.2 to 1.9
0 to 0.3
Iron (Fe), % 0 to 0.35
95.4 to 96.8
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
1.4 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0.45 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0