MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. Grade CW6M Nickel

7049 aluminum belongs to the aluminum alloys classification, while grade CW6M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is grade CW6M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 6.2 to 7.0
29
Fatigue Strength, MPa 160 to 170
210
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 510 to 530
560
Tensile Strength: Yield (Proof), MPa 420 to 450
310

Thermal Properties

Latent Heat of Fusion, J/g 370
330
Maximum Temperature: Mechanical, °C 180
970
Melting Completion (Liquidus), °C 640
1530
Melting Onset (Solidus), °C 480
1470
Specific Heat Capacity, J/kg-K 860
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.1
8.8
Embodied Carbon, kg CO2/kg material 8.1
13
Embodied Energy, MJ/kg 140
170
Embodied Water, L/kg 1110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 46 to 47
18
Strength to Weight: Bending, points 46 to 47
17
Thermal Shock Resistance, points 22 to 23
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.1 to 0.22
17 to 20
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
17 to 20
Nickel (Ni), % 0
54.9 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0