MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. S20161 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
250
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2 to 7.0
46
Fatigue Strength, MPa 160 to 170
360
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 300 to 310
690
Tensile Strength: Ultimate (UTS), MPa 510 to 530
980
Tensile Strength: Yield (Proof), MPa 420 to 450
390

Thermal Properties

Latent Heat of Fusion, J/g 370
330
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 480
1330
Specific Heat Capacity, J/kg-K 860
490
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.1
7.5
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
360
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
26
Strength to Weight: Axial, points 46 to 47
36
Strength to Weight: Bending, points 46 to 47
29
Thermal Diffusivity, mm2/s 51
4.0
Thermal Shock Resistance, points 22 to 23
22

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.1 to 0.22
15 to 18
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
65.6 to 73.9
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0