MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. 392.0 Aluminum

Both 7049A aluminum and 392.0 aluminum are aluminum alloys. They have 80% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is 392.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
75
Elongation at Break, % 5.0 to 5.7
0.86
Fatigue Strength, MPa 180
190
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 580 to 590
290
Tensile Strength: Yield (Proof), MPa 500 to 530
270

Thermal Properties

Latent Heat of Fusion, J/g 370
670
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 430
580
Specific Heat Capacity, J/kg-K 850
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
25
Electrical Conductivity: Equal Weight (Specific), % IACS 120
90

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.1
2.5
Embodied Carbon, kg CO2/kg material 8.2
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1100
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
2.4
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
490
Stiffness to Weight: Axial, points 13
17
Stiffness to Weight: Bending, points 44
56
Strength to Weight: Axial, points 52 to 53
32
Strength to Weight: Bending, points 50 to 51
39
Thermal Diffusivity, mm2/s 50
60
Thermal Shock Resistance, points 25
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.6 to 89.5
73.9 to 80.6
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0.4 to 0.8
Iron (Fe), % 0 to 0.5
0 to 1.5
Magnesium (Mg), % 2.1 to 3.1
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0.2 to 0.6
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.4
18 to 20
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 7.2 to 8.4
0 to 0.5
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.5