MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. B535.0 Aluminum

Both 7049A aluminum and B535.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
66
Elongation at Break, % 5.0 to 5.7
10
Fatigue Strength, MPa 180
62
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
25
Shear Strength, MPa 340 to 350
210
Tensile Strength: Ultimate (UTS), MPa 580 to 590
260
Tensile Strength: Yield (Proof), MPa 500 to 530
130

Thermal Properties

Latent Heat of Fusion, J/g 370
390
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 430
550
Specific Heat Capacity, J/kg-K 850
910
Thermal Conductivity, W/m-K 130
96
Thermal Expansion, µm/m-K 24
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
24
Electrical Conductivity: Equal Weight (Specific), % IACS 120
82

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.2
9.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
22
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
51
Strength to Weight: Axial, points 52 to 53
28
Strength to Weight: Bending, points 50 to 51
35
Thermal Diffusivity, mm2/s 50
40
Thermal Shock Resistance, points 25
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.6 to 89.5
91.7 to 93.4
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.15
Magnesium (Mg), % 2.1 to 3.1
6.5 to 7.5
Manganese (Mn), % 0 to 0.5
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.15
Titanium (Ti), % 0 to 0.25
0.1 to 0.25
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15