MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. EN AC-71100 Aluminum

Both 7049A aluminum and EN AC-71100 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 5.0 to 5.7
1.1
Fatigue Strength, MPa 180
150
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 580 to 590
260
Tensile Strength: Yield (Proof), MPa 500 to 530
230

Thermal Properties

Latent Heat of Fusion, J/g 370
490
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 430
520
Specific Heat Capacity, J/kg-K 850
860
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
32
Electrical Conductivity: Equal Weight (Specific), % IACS 120
97

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.9
Embodied Carbon, kg CO2/kg material 8.2
7.4
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1100
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
47
Strength to Weight: Axial, points 52 to 53
25
Strength to Weight: Bending, points 50 to 51
31
Thermal Shock Resistance, points 25
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.6 to 89.5
78.7 to 83.3
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.3
Magnesium (Mg), % 2.1 to 3.1
0.2 to 0.5
Manganese (Mn), % 0 to 0.5
0 to 0.15
Silicon (Si), % 0 to 0.4
7.5 to 9.5
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 7.2 to 8.4
9.0 to 10.5
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15