MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. S82121 Stainless Steel

7049A aluminum belongs to the aluminum alloys classification, while S82121 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is S82121 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.0 to 5.7
28
Fatigue Strength, MPa 180
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
78
Shear Strength, MPa 340 to 350
470
Tensile Strength: Ultimate (UTS), MPa 580 to 590
730
Tensile Strength: Yield (Proof), MPa 500 to 530
510

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 200
1020
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 430
1380
Specific Heat Capacity, J/kg-K 850
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1100
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 52 to 53
26
Strength to Weight: Bending, points 50 to 51
23
Thermal Diffusivity, mm2/s 50
4.0
Thermal Shock Resistance, points 25
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.6 to 89.5
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0.050 to 0.25
21 to 23
Copper (Cu), % 1.2 to 1.9
0.2 to 1.2
Iron (Fe), % 0 to 0.5
66.7 to 75.4
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
0.3 to 1.3
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0