MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. 1235 Aluminum

Both 705.0 aluminum and 1235 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is 1235 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 8.4 to 10
28 to 34
Fatigue Strength, MPa 63 to 98
23 to 58
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 240 to 260
80 to 84
Tensile Strength: Yield (Proof), MPa 130
23 to 57

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 610
640
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 140
230
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
60
Electrical Conductivity: Equal Weight (Specific), % IACS 110
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
3.8 to 24
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 24 to 26
8.2 to 8.6
Strength to Weight: Bending, points 31 to 32
15 to 16
Thermal Diffusivity, mm2/s 55
93
Thermal Shock Resistance, points 11
3.6 to 3.7

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.3 to 98.6
99.35 to 100
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 0.65
Magnesium (Mg), % 1.4 to 1.8
0 to 0.050
Manganese (Mn), % 0 to 0.6
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.65
Titanium (Ti), % 0 to 0.25
0 to 0.060
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 3.3
0 to 0.1
Residuals, % 0 to 0.15
0