MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. C64210 Bronze

705.0 aluminum belongs to the aluminum alloys classification, while C64210 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 8.4 to 10
35
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 240 to 260
570
Tensile Strength: Yield (Proof), MPa 130
290

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 610
990
Specific Heat Capacity, J/kg-K 890
430
Thermal Conductivity, W/m-K 140
48
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.4
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1170
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 24 to 26
19
Strength to Weight: Bending, points 31 to 32
18
Thermal Diffusivity, mm2/s 55
13
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0 to 0.2
89 to 92.2
Iron (Fe), % 0 to 0.8
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.2
1.5 to 2.0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.3
0 to 0.5
Residuals, % 0
0 to 0.5