MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. 6013 Aluminum

Both 7050 aluminum and 6013 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 2.2 to 12
3.4 to 22
Fatigue Strength, MPa 130 to 210
98 to 140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 280 to 330
190 to 240
Tensile Strength: Ultimate (UTS), MPa 490 to 570
310 to 410
Tensile Strength: Yield (Proof), MPa 390 to 500
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 370
410
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 490
580
Specific Heat Capacity, J/kg-K 860
900
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
38
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.8
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
200 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
49
Strength to Weight: Axial, points 45 to 51
31 to 41
Strength to Weight: Bending, points 45 to 50
37 to 44
Thermal Diffusivity, mm2/s 54
60
Thermal Shock Resistance, points 21 to 25
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.1
94.8 to 97.8
Chromium (Cr), % 0 to 0.040
0 to 0.1
Copper (Cu), % 2.0 to 2.6
0.6 to 1.1
Iron (Fe), % 0 to 0.15
0 to 0.5
Magnesium (Mg), % 1.9 to 2.6
0.8 to 1.2
Manganese (Mn), % 0 to 0.1
0.2 to 0.8
Silicon (Si), % 0 to 0.12
0.6 to 1.0
Titanium (Ti), % 0 to 0.060
0 to 0.1
Zinc (Zn), % 5.7 to 6.7
0 to 0.25
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0 to 0.15