MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. EN 1.4107 Stainless Steel

7050 aluminum belongs to the aluminum alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 12
18 to 21
Fatigue Strength, MPa 130 to 210
260 to 350
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 490 to 570
620 to 700
Tensile Strength: Yield (Proof), MPa 390 to 500
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 490
1410
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
27
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.1
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1120
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
420 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 45 to 51
22 to 25
Strength to Weight: Bending, points 45 to 50
21 to 22
Thermal Diffusivity, mm2/s 54
7.2
Thermal Shock Resistance, points 21 to 25
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.040
11.5 to 12.5
Copper (Cu), % 2.0 to 2.6
0 to 0.3
Iron (Fe), % 0 to 0.15
83.8 to 87.2
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0

Comparable Variants