MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. EN AC-47100 Aluminum

Both 7050 aluminum and EN AC-47100 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 2.2 to 12
1.1
Fatigue Strength, MPa 130 to 210
110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 490 to 570
270
Tensile Strength: Yield (Proof), MPa 390 to 500
160

Thermal Properties

Latent Heat of Fusion, J/g 370
570
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 630
590
Melting Onset (Solidus), °C 490
560
Specific Heat Capacity, J/kg-K 860
890
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
30
Electrical Conductivity: Equal Weight (Specific), % IACS 100
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1120
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
170
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
53
Strength to Weight: Axial, points 45 to 51
28
Strength to Weight: Bending, points 45 to 50
35
Thermal Diffusivity, mm2/s 54
54
Thermal Shock Resistance, points 21 to 25
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.1
81.4 to 88.8
Chromium (Cr), % 0 to 0.040
0 to 0.1
Copper (Cu), % 2.0 to 2.6
0.7 to 1.2
Iron (Fe), % 0 to 0.15
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 1.9 to 2.6
0 to 0.35
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.12
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.060
0 to 0.2
Zinc (Zn), % 5.7 to 6.7
0 to 0.55
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0 to 0.25