MakeItFrom.com
Menu (ESC)

707.0-F Aluminum vs. EN AC-48100-F

Both 707.0-F aluminum and EN AC-48100-F are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 707.0-F aluminum and the bottom bar is EN AC-48100-F.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
76
Elongation at Break, % 1.7
1.1
Fatigue Strength, MPa 140
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
29
Tensile Strength: Ultimate (UTS), MPa 270
240
Tensile Strength: Yield (Proof), MPa 200
190

Thermal Properties

Latent Heat of Fusion, J/g 380
640
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
580
Melting Onset (Solidus), °C 600
470
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
87

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 290
250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 32
31
Thermal Diffusivity, mm2/s 58
55
Thermal Shock Resistance, points 12
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
72.1 to 79.8
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
4.0 to 5.0
Iron (Fe), % 0 to 0.8
0 to 1.3
Magnesium (Mg), % 1.8 to 2.4
0.25 to 0.65
Manganese (Mn), % 0.4 to 0.6
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.2
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 4.0 to 4.5
0 to 1.5
Residuals, % 0 to 0.15
0 to 0.25