MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. 1100A Aluminum

Both 707.0 aluminum and 1100A aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 1.7 to 3.4
4.5 to 34
Fatigue Strength, MPa 75 to 140
35 to 74
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 270 to 300
89 to 170
Tensile Strength: Yield (Proof), MPa 170 to 250
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 600
640
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
230
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
60
Electrical Conductivity: Equal Weight (Specific), % IACS 110
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
5.9 to 150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 26 to 29
9.1 to 17
Strength to Weight: Bending, points 32 to 34
16 to 25
Thermal Diffusivity, mm2/s 58
93
Thermal Shock Resistance, points 12 to 13
4.0 to 7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
99 to 100
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
0.050 to 0.2
Iron (Fe), % 0 to 0.8
0 to 1.0
Magnesium (Mg), % 1.8 to 2.4
0 to 0.1
Manganese (Mn), % 0.4 to 0.6
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 1.0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 4.0 to 4.5
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15