MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. 5083 Aluminum

Both 707.0 aluminum and 5083 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 1.7 to 3.4
1.1 to 17
Fatigue Strength, MPa 75 to 140
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 270 to 300
290 to 390
Tensile Strength: Yield (Proof), MPa 170 to 250
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
95 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 26 to 29
29 to 40
Strength to Weight: Bending, points 32 to 34
36 to 44
Thermal Diffusivity, mm2/s 58
48
Thermal Shock Resistance, points 12 to 13
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
92.4 to 95.6
Chromium (Cr), % 0.2 to 0.4
0.050 to 0.25
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.4
Magnesium (Mg), % 1.8 to 2.4
4.0 to 4.9
Manganese (Mn), % 0.4 to 0.6
0.4 to 1.0
Silicon (Si), % 0 to 0.2
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 4.0 to 4.5
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants