MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. 5457 Aluminum

Both 707.0 aluminum and 5457 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 1.7 to 3.4
6.0 to 22
Fatigue Strength, MPa 75 to 140
55 to 98
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 270 to 300
130 to 210
Tensile Strength: Yield (Proof), MPa 170 to 250
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 630
660
Melting Onset (Solidus), °C 600
630
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
180
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
46
Electrical Conductivity: Equal Weight (Specific), % IACS 110
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
18 to 250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 26 to 29
13 to 21
Strength to Weight: Bending, points 32 to 34
21 to 28
Thermal Diffusivity, mm2/s 58
72
Thermal Shock Resistance, points 12 to 13
5.7 to 9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
97.8 to 99.05
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 0 to 0.8
0 to 0.1
Magnesium (Mg), % 1.8 to 2.4
0.8 to 1.2
Manganese (Mn), % 0.4 to 0.6
0.15 to 0.45
Silicon (Si), % 0 to 0.2
0 to 0.080
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 4.0 to 4.5
0 to 0.050
Residuals, % 0 to 0.15
0 to 0.1