MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. EN AC-51500 Aluminum

Both 707.0 aluminum and EN AC-51500 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 1.7 to 3.4
5.6
Fatigue Strength, MPa 75 to 140
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 270 to 300
280
Tensile Strength: Yield (Proof), MPa 170 to 250
160

Thermal Properties

Latent Heat of Fusion, J/g 380
430
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
13
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
52
Strength to Weight: Axial, points 26 to 29
29
Strength to Weight: Bending, points 32 to 34
36
Thermal Diffusivity, mm2/s 58
49
Thermal Shock Resistance, points 12 to 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
89.8 to 93.1
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 0.25
Magnesium (Mg), % 1.8 to 2.4
4.7 to 6.0
Manganese (Mn), % 0.4 to 0.6
0.4 to 0.8
Silicon (Si), % 0 to 0.2
1.8 to 2.6
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 4.0 to 4.5
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.15