MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. Grade 6 Titanium

707.0 aluminum belongs to the aluminum alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 1.7 to 3.4
11
Fatigue Strength, MPa 75 to 140
290
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 270 to 300
890
Tensile Strength: Yield (Proof), MPa 170 to 250
840

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 630
1580
Melting Onset (Solidus), °C 600
1530
Specific Heat Capacity, J/kg-K 880
550
Thermal Conductivity, W/m-K 150
7.8
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.9
4.5
Embodied Carbon, kg CO2/kg material 8.3
30
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
92
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
3390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
35
Strength to Weight: Axial, points 26 to 29
55
Strength to Weight: Bending, points 32 to 34
46
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 12 to 13
65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
4.0 to 6.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.8
0 to 0.5
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.25
89.8 to 94
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0 to 0.4