MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. Nickel 693

707.0 aluminum belongs to the aluminum alloys classification, while nickel 693 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 3.4
34
Fatigue Strength, MPa 75 to 140
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 270 to 300
660
Tensile Strength: Yield (Proof), MPa 170 to 250
310

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 600
1310
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
9.1
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
9.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
190
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 26 to 29
23
Strength to Weight: Bending, points 32 to 34
21
Thermal Diffusivity, mm2/s 58
2.3
Thermal Shock Resistance, points 12 to 13
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.2 to 0.4
27 to 31
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.8
2.5 to 6.0
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0 to 1.0
Nickel (Ni), % 0
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 1.0
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0