MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. C47000 Brass

707.0 aluminum belongs to the aluminum alloys classification, while C47000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is C47000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 1.7 to 3.4
36
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 270 to 300
380
Tensile Strength: Yield (Proof), MPa 170 to 250
150

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 600
890
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
21

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
100
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 26 to 29
13
Strength to Weight: Bending, points 32 to 34
15
Thermal Diffusivity, mm2/s 58
38
Thermal Shock Resistance, points 12 to 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 93.6
0 to 0.010
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
57 to 61
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0.25 to 1.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
37.5 to 42.8
Residuals, % 0 to 0.15
0 to 0.4