MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. A201.0 Aluminum

Both 7075 aluminum and A201.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 1.8 to 12
4.7
Fatigue Strength, MPa 110 to 190
97
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 240 to 590
480
Tensile Strength: Yield (Proof), MPa 120 to 510
420

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 480
570
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
30
Electrical Conductivity: Equal Weight (Specific), % IACS 98
90

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
22
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
1250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 22 to 54
44
Strength to Weight: Bending, points 28 to 52
45
Thermal Diffusivity, mm2/s 50
46
Thermal Shock Resistance, points 10 to 25
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.9 to 91.4
93.7 to 95.5
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
4.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.1
Magnesium (Mg), % 2.1 to 2.9
0.15 to 0.35
Manganese (Mn), % 0 to 0.3
0.2 to 0.4
Silicon (Si), % 0 to 0.4
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.35
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.1