MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. ACI-ASTM CA6N Steel

7075 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.8 to 12
17
Fatigue Strength, MPa 110 to 190
640
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 240 to 590
1080
Tensile Strength: Yield (Proof), MPa 120 to 510
1060

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
23
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1120
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
2900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 22 to 54
38
Strength to Weight: Bending, points 28 to 52
30
Thermal Diffusivity, mm2/s 50
6.1
Thermal Shock Resistance, points 10 to 25
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.18 to 0.28
10.5 to 12.5
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.5
77.9 to 83.5
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0