MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. EN AC-45000 Aluminum

Both 7075 aluminum and EN AC-45000 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 1.8 to 12
1.1
Fatigue Strength, MPa 110 to 190
75
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 240 to 590
180
Tensile Strength: Yield (Proof), MPa 120 to 510
110

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 480
520
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
27
Electrical Conductivity: Equal Weight (Specific), % IACS 98
81

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.3
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1120
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
80
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
47
Strength to Weight: Axial, points 22 to 54
17
Strength to Weight: Bending, points 28 to 52
24
Thermal Diffusivity, mm2/s 50
47
Thermal Shock Resistance, points 10 to 25
8.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.9 to 91.4
82.2 to 91.8
Chromium (Cr), % 0.18 to 0.28
0 to 0.15
Copper (Cu), % 1.2 to 2.0
3.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 2.1 to 2.9
0 to 0.55
Manganese (Mn), % 0 to 0.3
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.4
5.0 to 7.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 5.1 to 6.1
0 to 2.0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.35