MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. Grade CW2M Nickel

7075 aluminum belongs to the aluminum alloys classification, while grade CW2M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is grade CW2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.8 to 12
23
Fatigue Strength, MPa 110 to 190
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
83
Tensile Strength: Ultimate (UTS), MPa 240 to 590
560
Tensile Strength: Yield (Proof), MPa 120 to 510
310

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 640
1520
Melting Onset (Solidus), °C 480
1460
Specific Heat Capacity, J/kg-K 870
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1120
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 22 to 54
18
Strength to Weight: Bending, points 28 to 52
17
Thermal Shock Resistance, points 10 to 25
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.18 to 0.28
15 to 17.5
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.5
0 to 2.0
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
15 to 17.5
Nickel (Ni), % 0
60.1 to 70
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.8
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0