MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. S17700 Stainless Steel

7075 aluminum belongs to the aluminum alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.8 to 12
1.0 to 23
Fatigue Strength, MPa 110 to 190
290 to 560
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 150 to 340
740 to 940
Tensile Strength: Ultimate (UTS), MPa 240 to 590
1180 to 1650
Tensile Strength: Yield (Proof), MPa 120 to 510
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
460 to 3750
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 22 to 54
42 to 59
Strength to Weight: Bending, points 28 to 52
32 to 40
Thermal Diffusivity, mm2/s 50
4.1
Thermal Shock Resistance, points 10 to 25
39 to 54

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.9 to 91.4
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0.18 to 0.28
16 to 18
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.5
70.5 to 76.8
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants