MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. S31730 Stainless Steel

7075 aluminum belongs to the aluminum alloys classification, while S31730 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.8 to 12
40
Fatigue Strength, MPa 110 to 190
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 150 to 340
370
Tensile Strength: Ultimate (UTS), MPa 240 to 590
540
Tensile Strength: Yield (Proof), MPa 120 to 510
200

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.3
4.6
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
99
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 22 to 54
19
Strength to Weight: Bending, points 28 to 52
18
Thermal Shock Resistance, points 10 to 25
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.28
17 to 19
Copper (Cu), % 1.2 to 2.0
4.0 to 5.0
Iron (Fe), % 0 to 0.5
52.4 to 61
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
15 to 16.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0