MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. N12160 Nickel

7108A aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11 to 13
45
Fatigue Strength, MPa 120 to 130
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 210
500
Tensile Strength: Ultimate (UTS), MPa 350
710
Tensile Strength: Yield (Proof), MPa 290 to 300
270

Thermal Properties

Latent Heat of Fusion, J/g 380
360
Maximum Temperature: Mechanical, °C 210
1060
Melting Completion (Liquidus), °C 630
1330
Melting Onset (Solidus), °C 520
1280
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
90
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1150
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
260
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 34
24
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 59
2.8
Thermal Shock Resistance, points 15 to 16
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.040
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 3.5
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0