MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. AWS ER80S-B2

711.0 aluminum belongs to the aluminum alloys classification, while AWS ER80S-B2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is AWS ER80S-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 7.8
21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 220
620
Tensile Strength: Yield (Proof), MPa 140
540

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1120
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 61
11
Thermal Shock Resistance, points 9.3
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0.070 to 0.12
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 0.35 to 0.65
0 to 0.35
Iron (Fe), % 0.7 to 1.4
95.2 to 97.5
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0 to 0.5